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Introduction 

The theory of Differential equation said Sophus lie is the 

most important branch of modern Mathematics.  The 

subject may consider occupying a central position from 

which different lines of development extend in many 

directions. The study of differential equations began very 

soon after the invention of the differential and integral 

calculus to which it forms a natural sequel.  Newton in 

1676 solved a differential equation by the use of an infinite 

series only eleven years after his discovery of the fluxional 

form of the differential calculus in 1665.  But results were 

not published until 1693, the same year in which a 

differential equation occurred for the first time in the work 

of Leibnitz (whose account of differential calculus was 

published in 1684. In the next few years progress was 

rapid, in 1694-97 John Bernoulli explained the method of 

“separating the variables” and he showed how to reduce a 

homogenous differential equation of the first order to one 

in which the variables were separable.  He applied those 

method to problems on orthogonal trajectories. And his 

brother Jacob also known as James (after whom 

“Bernoulli’s Equation” named) succeeded in reducing a 

large number of different equations to forms they could 

solve.  Integrating factor was probably introduced by Euler 

(1734) and independently of him by Fontaine and Clairaut 

though also attributed to Leibnitz.  Just to mention a few. 

Solving differential equations of second order or higher 

were due to Euler D’Alembert dealt with the case when the 

auxillary equation had roots. Particular solutions were not 

given until about a hundred years after by Lobato (1837) 

and Boole (1859). Partial Differential Equations (PDE) was 

first given the form of a vibrating string of second order 

was discussed by Euler D’ Alembert (1747).  Lagrange 

completed the solution in 1772 to 1785. Alot of discovery 

and solution had been investigated ever since. 

Definitions 

Differential equations are mathematical equations that 

involve differential coefficients, such as equations 1-5. In 

general, a differential equation is an equation that relates an 

unknown function to one or more of its derivatives, often 

describing how the function changes over time or space. 
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Type 

Differential equations can be broadly classified into two 

categories: 

1. Ordinary Differential Equations (ODEs): These 

equations involve only one independent variable and are 

typically denoted as equations (1), (2), (3), and (4). ODEs 

describe how a function changes over a single variable. 

2. Partial Differential Equations (PDEs): These equations 

involve two or more independent variables and include 

partial differential coefficients with respect to each 

variable, as seen in equation (5). PDEs describe how a 

function changes over multiple variables. 

Order 

The order of a differential equation is determined by the 

highest-order derivative present in the equation. For 

instance: 

- Equation (1) and (3) is of the second order, as it involves 

a second-order differential coefficient. 

- Equation (4) is of the first order, as it only involves a first-

order differential coefficient. 

- Equation (2) and (5) is of the third order, indicating that it 

involves a third-order differential coefficient. 

In general, the order of a differential equation is defined by 

the highest-order derivative that appears in the equation. 

Degree 

The degree of a differential equation refers to the highest 

power or exponent of the highest-order differential 

coefficient, once the equation has been rationalized and 

integrated with respect to the differential coefficients. For 

example: 

- Equations (1), (2), (4), and (5) are all of the first degree. 
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Equation (3) is not initially in rational form; however, after 

squaring to rationalize, it can be determined to be of a 

specific degree 
1
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We then see that it is of the second degree as 
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squared. 

Theoretical Underpinning 

This section provides an overview of methods for solving 

first-order ordinary differential equations (ODEs). There 

are two primary approaches to solving differential 

equations the Analytic Method and the Numerical Methods, 

which will be discussed briefly:  

Analytic Method 

These methods involve finding an exact, closed-form 

solution to the differential equation using mathematical 

techniques such as separation of variables, integration 

factors, and undetermined coefficients. 

In solving differential equations analytically, the follow 

methods can be adopted. 

Variable Separable Method 

A variable separable equation is a first order differential 

equation in which the expression for 
dy

dx
 can be factored 

as a function of x  times a function of y  

It can be written in the form  

( ) ( )
dy

f x g x
dx

=    (7) 

The name separable comes from the fact that the expression 

on the right side can be “separated” into a function x and a 

function of y . Equivalently if ( ) 0f y   we could write     

𝑑𝑦

𝑑𝑥
=
𝑔(𝑥)

𝑓(𝑦)
      (8) 

Where ℎ(𝑦) =
1

𝑓(𝑦)
 

To solve (8) we rewrite it in the form ℎ𝑦𝑑𝑦 = 𝑔(𝑥)𝑑𝑥 

So that all y ’s are on one side of the equation and all x ’s 

are on the other side. Then we integrate both sides of the 

equation. Thus, ∫ℎ(𝑥)𝑑𝑦 = ∫𝑔(𝑥)𝑑𝑥 

Example 1: Solve 
𝑑𝑥

𝑥
= tan 𝑦 𝑑𝑦 

The R.H.S involves x only and the R.H.S only so the 

variables are separate. 

Integrating, we have.  

 log 𝑥 = − log cos 𝑦 + 𝑐 log 𝑥 cos 𝑦 = 𝑐                                                                                                                                                  
xcos 𝑦 = 𝑒𝑐say𝑒𝑐 = 𝑎                                                                                                                      

xcos 𝑦 = 𝑎 

Example 2: Solve  
𝑑𝑦

𝑑𝑥
= 2𝑥𝑦 

We can separate the variable thus 

Multiplying by 𝑑𝑥 and divide by 𝑦,we get  

 Log 𝑥 = 𝑥2 + 𝑐 

𝑦 = 𝑎𝑒𝑥
2
 

Where c is an arbitrary constant 

Exact Equations 

Here we consider the expression 

𝑀𝑑𝑥 + 𝑁𝑑𝑦 = 0          (9) 

This is an exact differential equation if 𝑀(𝑥, 𝑦) and 𝑁(𝑥, 𝑦) 
are continuous differential functions for which the follow 

relationship is fulfilled. 
𝜕𝑀

𝜕𝑦
=
𝜕𝑁

𝜕𝑥
          (10) 

    
𝜕𝑀

𝜕𝑦
𝑎𝑛𝑑

𝜕𝑁

𝜕𝑥
are continuous in some region. 

Integrating exact differential equations, we shall prove that 

the left side of equation (9) is an exact different equation 

then the condition (10) is fulfilled and conversely.  If 

condition (10) is fulfilled the left side of equation (9) is 

exact differential of some function 𝑈(𝑥, 𝑦)that is equation 

(9) is an equation of the form 𝑑𝑈(𝑥, 𝑦) = 0 and 

consequently its complete integral is  

𝑈(𝑥, 𝑦) = 𝑐 
Let us first assume that the left side of (9) is an exact 

differential of some function 𝑈(𝑥, 𝑦) 𝑖𝑒 𝑀(𝑥, 𝑦)𝑑𝑥 +

𝑁(𝑥, 𝑦)𝑑𝑦 = 𝑑𝑈 =
𝑑𝑢

𝑑𝑥
𝑑𝑥 +

𝑑𝑢

𝑑𝑦
𝑑𝑦 , 𝑁 =

𝑑𝑢 

𝑑𝑥
      𝑀

𝑑𝑦

𝑑𝑥

 Differentiating, the first relation with respect to y 

and the second with respect to x we obtain. 

𝜕𝑀

𝜕𝑦
=
𝜕2𝑈

𝜕𝑥𝜕𝑦
,              

𝜕𝑁

𝜕𝑥
=
𝜕2𝑈

𝜕𝑥𝜕𝑦
 

Assuming continuity of the second derivatives, we have 
𝜕𝑀

𝜕𝑦
=
𝜕𝑁

𝜕𝑦
 

From the relation 
𝜕𝑦

 𝜕𝑥
= 𝑀(𝑥, 𝑦) 

we find  

𝑈 = ∫𝑀(𝑥, 𝑦)𝑑𝑥 + ∅(𝑦) 

we differentiate with respect to 𝑦 and equate the result to 

𝑁(𝑥, 𝑦) 
𝜕𝑈

𝜕𝑦
= ∫

𝜕𝑀

𝜕𝑦
𝑑𝑥 + ∅(𝑦) = 𝑁(𝑥, 𝑦) 

but since 
𝜕𝑈

𝜕𝑦
=
𝜕𝑁

𝜕𝑥
 

we can write 

𝑈 = ∫
𝜕𝑀

𝜕𝑥
𝑑𝑥 + ∅(𝑦)

𝐼 = 𝑁 

i.e   𝑁(𝑥, 𝑦) + ∅(𝑦) = 𝑁(𝑥, 𝑦) 

∅(𝑦) = ∫𝑁(𝑥, 𝑦)𝑑𝑥 + 𝑐1 

Thus      𝑈 = ∫𝑀(𝑥, 𝑦)𝑑𝑦 + 𝑁(𝑥, 𝑦)𝑑𝑦 + 𝑐1 

Example 1: Here, we solve 𝑦𝑑𝑥 + 𝑥𝑑𝑦 = 0 

𝑑(𝑦𝑥) = 0 

i.e 𝑦𝑥 = 𝑐 

Example 2: Solve  
2𝑥

𝑦3
𝑑𝑥 +

𝑦2−3𝑥2

𝑦4
𝑑𝑦 = 0 

Here, 𝑀 =
2𝑥

𝑦3
, 𝑁 =

𝑦2−3𝑥2

𝑦4
 

𝜕𝑀

𝜕𝑦
=
6𝑥

𝑦3
𝜕𝑁

𝜕𝑥
=
−6𝑥

𝑦4
 

Since,  
𝜕𝑚

𝜕𝑦
=
𝜕𝑁

𝜕𝑥
 

Here it is an exact differential equation  

Then, 
𝜕𝑈

𝜕𝑥
=
2𝑥

𝑦3
 

So,  

𝑈 = ∫
2𝑥

𝑦3
+ ∅(𝑦) =

𝑥2

𝑦3
+ ∅(𝑦) 
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𝜕𝑢

𝜕𝑦
= 𝑁 =

𝑦2 − 3𝑦2

𝑦3
 

=
−3𝑥2

𝑦4
+ ∅(𝑦) =

𝑦2 − 3𝑥2

𝑦4
 

∅(𝑦)
𝐼 =

1

𝑦2
 

∅(𝑦) =
−1

𝑦
+ 𝑐1 

𝑈(𝑥, 𝑦) =
𝑥2

𝑦3
−
1

𝑦
+ 𝑐 

Homogenous method by substituting  

𝑦 = 𝑣𝑥                           (11) 

in this case we make the substitution of equation (11) and 

differentiate with respect to 𝑥 
𝑑𝑦

𝑑𝑥
= 𝑣 + 𝑥

𝑑𝑣

𝑑𝑥
                         (12) 

Example 1: We solve 
𝑑𝑦

𝑑𝑥
=
𝑥+3𝑦

2𝑥
 

We substituting equation (11) and (12) and the equation 

now becomes 

𝑣 + 𝑥
𝑑𝑣

𝑑𝑥
=
𝑥 + 𝑣𝑥

2𝑥
 

=
1 + 3𝑣

2
 

𝑥
𝑑𝑣

𝑑𝑥
=
1 + 3𝑣

2
− 𝑣 

The equation is now expressed in terms of v and x this 

form we find that we can solve by separating the variables, 

thus 

∫
2

1 + 𝑣
𝑑𝑣 = ∫

1

𝑥
𝑑𝑥 

2 log(1 + 𝑣) = log 𝑥 + 𝑐 
log(1 + 𝑣)2 = log x + log a 

But 𝑦 = 𝑣𝑥      so  𝑣 =
𝑦

𝑥
 

(1 +
𝑦

𝑥
)
2

= 𝐴𝑥 

Which gives 

(𝑥 + 𝑦)2 = 𝐴𝑥3 

Integrating factor 

When we have an equation of the form 
𝑑𝑦

𝑑𝑥
+ 𝑝𝑦 = 𝑄 

Where P and Q are function of 𝑥, this type of an equation is 

a linear equation of the first order.  To solve any equation 

of such we multiply both side by an integrating factor 

which ie of the form. 

𝐼. 𝐹 = 𝑒∫𝑝𝑑𝑥 

this converts the L.H.S into the derivative f a product 

Example 1: Solve 
𝑑𝑦

𝑑𝑥
− 𝑦 = 𝑥 

If we compare this with 
𝑑𝑦

𝑑𝑥
+ 𝑝𝑦 = 𝑄 we see that 𝑝 = −1 

and 𝑄 = 1 

hence, the integrating factor is: 

𝑒−∫𝑝𝑑𝑥 = 𝑒−𝑥  

we multiply both sides by 𝑒−𝑥  

𝑒−𝑥
𝑑𝑦

𝑑𝑥
− 𝑦𝑒−𝑥 = 𝑥𝑒−𝑥  

that is  
𝑑

𝑑𝑥
(𝑒−𝑥𝑦) = 𝑥𝑒−𝑥 

𝑦𝑒−𝑥 = ∫𝑥𝑒−𝑥 𝑑 

The R.H.S integral can now be determined by integration 

by parts 

𝑦𝑒−𝑥 = 𝑥(−𝑒−𝑥) + ∫𝑒−𝑥𝑑𝑥 

= −𝑥𝑒−𝑥 − 𝑒−𝑥 + 𝑐 
= −𝑥 − 1 + 𝑐𝑒𝑥 

∴ 𝑦 = 𝑐𝑒𝑥 − 𝑥 − 1 

Bernoulli’s equation  

These are equation of the form 
𝑑𝑦

𝑑𝑥
+ 𝑝𝑦 = 𝑄

𝑛  

Where 𝑃 and 𝑄 are functions of 𝑥 (or constant) dividing 

both sides by 𝑦𝑛to have. 

𝑦𝑛
𝑑𝑦

𝑑𝑥
+ 𝑃𝑦1−𝑛 = 𝑄 

and letting   𝑍 = 𝑦1−𝑛  

So that differentiating 
𝑑𝑧

𝑑𝑥
= (1 − 𝑛)𝑦𝑛

𝑑𝑦

𝑑𝑥
 

Put 𝑍 = 𝑦1−𝑛 𝑎𝑛𝑑 𝑠𝑜 
𝑑𝑧

𝑑𝑥
= (1 − 𝑛)𝑦−𝑛

𝑑𝑦

𝑑𝑥
 

If we now multiply (2.6) by (1-n) we shall convert the first 

term into 
𝑑𝑧

𝑑𝑥
 that is 

(1 − 𝑛)𝑦−𝑛
𝑑𝑦

𝑑𝑥
+ (1 − 𝑛)𝑝𝑦1−𝑛 = (1 − 𝑛)𝑄 

Consequently, we have 
𝑑𝑧

𝑑𝑥
+ 𝑃𝐼(𝑧) = 𝑄𝐼 

Where 𝑄𝐼 𝑎𝑛𝑑𝑃𝐼 are function of 𝑥 

Example 1: Solve  
𝑑𝑦

𝑑𝑥
+
1

𝑥
𝑦 = 𝑥 

Divide both sides by 𝑦2 

𝑦−2
𝑑𝑦

𝑑𝑥
+
1

𝑥
𝑦−1 = 𝑥 

Letting 𝑍 = 𝑦1−𝑛 = 𝑦−1 
𝑑𝑧

𝑑𝑥
= 𝑦−2

𝑑𝑦

𝑑𝑥
 

Multiply through by –1 to have 

−𝑦−2
𝑑𝑦

𝑑𝑥
−
1

𝑥
𝑦−1 = −𝑥 

So that 
𝑑𝑧

𝑑𝑥
−
1

𝑥
𝑧 = −1 

Which is of the form 
𝑑𝑧

𝑑𝑥
+ 𝑃𝑍 = 𝑄 

So that the equation can be solved by the normal 

integrating factor method 

𝐼. 𝐹 =
1

𝑥
 

𝑍
1

𝑥
= −∫𝑑𝑥 

𝑍 = 𝑐𝑥 − 𝑥2 

so  𝑦 = (𝑐𝑥 − 𝑥)−1 

Numerical Methods 

These methods involve approximating the solution to the 

differential equation using numerical algorithms, such as 

Euler's method, Runge-Kutta methods, and finite difference 

methods. Numerical methods are often used when 

analytical solutions are not possible or are difficult to 

obtain. Numerical methods play a crucial role in solving 

differential equations, particularly those whose analytical 

solutions are intractable or difficult to obtain. In fact, only a 

http://www.ftstjournal.com/
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limited number of differential equations can be solved 

exactly in terms of familiar functions. For the majority of 

equations, approximate numerical methods must be 

employed. 

Furthermore, even when analytical methods are applicable, 

they often provide approximations that are only accurate 

for a short range of 𝑥 values. In such cases, numerical 

methods can provide more accurate and reliable solutions 

over a broader range of values. In such where a differential 

equation and known bound condition are given an 

approximate solution is often obtainable by the application 

of numerical methods. Starting with Picard’s method of 

getting successive algebraic approximations.  By putting 

values in these, we generally get excellent numerical 

results.  Unfortunately, the method can be applied to a 

limited class of equation. Some various methods frequently 

used numerical method are methods such as Euler, Runge-

Kutha, Adams-Bashforth and predictor-corrector method. 

Euler’s method 

For a first order differential equation 

𝑦′ = 𝑓(𝑥, 𝑦)                                          (13) 

with initial condition 

𝑦𝑥0 = 𝑦0                   (14) 

Euler’s method is the simplest of Approximation 

techniques.  A step length ℎ is chosen and 𝑦 is 

approximated at the point 𝑥𝑛 = 𝑥0 + 𝑛ℎ. The 

approximation to 𝑦(𝑥𝑛)being devoted by 𝑦𝑛 

The direction field for the differential equation (13) consist 

at each point of the (x, y) plane, of the slope of the solution 

to (13) which passes through that point that is, a straight 

line for a step length h in the 𝑥-direction.  

Alternatively, the solution of (13) passing 

through the point (𝑥𝑛 , 𝑦𝑛) has slope 𝑓(𝑥𝑛, 𝑦𝑛) at the point 

and so a first order, Taylor’s expansion of this solution 

about 𝑥𝑛 leads to the approximation. 𝑦𝑛+1 = 𝑦𝑛 +
ℎ𝑓(𝑦𝑛𝑥𝑛) 
Mid-Point Method 

The midpoint method also known as the second 

order Runge- Kutta method, improver the Euler method by 

adding a mid-point in the step which increase the accuracy 

by one order. 

To solve a first order ordinary differential equation 

  
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

Given the initial condition  

𝑦𝑥0 = 𝑦0 and pick the marching step ℎ 

𝑘1 = ℎ𝑓(𝑥𝑛𝑦𝑛) 

𝑘2 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘𝐼
2
) 

𝑘2 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘𝐼
2
) 

𝑦𝑛+1 = 𝑦𝑛 + 𝑘2 + 0(ℎ
3) 

Runge – Kutta Method 

One of the most widely used fixed step length Runge- 

Kutta methhod is the classical Runge-Kutta or R4 method 

which uses a four-stage formula 

To solve a first order ordinary differential equal 

 
𝑑𝑦

𝑑𝑥
= 𝑓(𝑥, 𝑦) 

Given the initial condition 𝑦𝑥0 = 𝑦0  and given the 

marching step ℎ 

𝑘1 = ℎ(𝑥𝑛, 𝑦𝑛) 

𝑘2 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2
2
) 

𝑘3 = ℎ𝑓 (𝑥𝑛 +
ℎ

2
, 𝑦𝑛 +

𝑘2
2
) 

𝑘4 = ℎ𝑓(𝑥𝑛 + ℎ, 𝑦𝑛 + 𝑘3) 

𝑦𝑛+1 = 𝑦𝑛 +
𝑘𝐼

6
+
𝑘2

3
+
𝑘3

3
+
𝑘4

6
+ 0(ℎ5)  

Linear Multistep Method 

Linear multistep methods are used in mathematics for the 

Numerical solution of ordinary differential equations. 

Linear multistep methods can be used to solve into value 

problems of the form. 

𝑦𝐼 = 𝑓(𝑥, 𝑦)𝑦𝑥0 = 𝑦0 

Consider for example the problem 

𝑦𝐼 = 𝑦𝑦(0) = 𝑦0 

The exact equation is 

𝑦(𝑥) = 𝑒
𝑡 

A simple numerical method is Euler’s method 

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛) 
Euler’s method is a one-step method. A simple multistep 

method is the two step Adams-Bashforth method which is 

𝑦𝑛+2 = 𝑦𝑛+1 +
3

2
ℎ𝑓(𝑥𝑛, 𝑦𝑛) −

1

2
ℎ𝑓(𝑥𝑛 , 𝑦𝑛) 

This method needs two values 𝑦𝑛+1 and 𝑦𝑛 to compute the 

next 𝑦𝑛+2level 

Generally linear multistep method is a method of form 

 ∑ 𝛼𝑠𝑦𝑛+𝑠 = ℎ∑ 𝛽𝑠𝑓𝑛+𝑠
𝑛
𝑠=0

𝑛
𝑠=0             

          (15)  

A numerical method is classified as explicit if 𝛽𝑠 = 0, and 

implicit if 𝛽𝑠 ≠ 0, with the coefficients 𝛼𝑜 …𝛼𝑠−1 and 

𝛽0…𝛽𝑠 determining the specific method, where ℎ denotes 

the step size and  𝑓 represents the right-hand side of the 

differential equation. 

Examples 

The simplest of all Adams method is the explicit one step 

method which is just Euler’s method     

𝑦𝑛+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛 , 𝑦𝑛) 
The simplest Adams-Moultons method is also the one step 

method which is of the form 

𝑦𝑛+1 = 𝑦𝑛 +
1

2
[𝑓(𝑥𝑛+1, 𝑦𝑛+1) − 𝑓(𝑥𝑛, 𝑦𝑛)] 

The co-efficient are those of the trapezoidal rule so the one 

step Adams Moultons method is the implicit trapezoidal 

formula. 

The two-step formulas are: 

Adams – Bashforth 𝑛 = 2 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
[3𝑓(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥𝑛−1, 𝑦𝑛−1)] 

Adams moulton 𝑛 = 2 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

12
[5𝑓(𝑥𝑛+1, 𝑦𝑛+1) + 8𝑓(𝑥𝑛 , 𝑦𝑛)

− 𝑓(𝑥𝑛−1, 𝑦𝑛−1)] 
It is of great importance to note that implicit method entails 

a substantially greater computational effort than the explicit 

method. On the other hand, for a given step number  𝑘 

implicit methods can be made more accurate than explicit 

ones. So, an 𝑁 step Adams Bashforth formula has global 

truncation error of order 0(ℎ𝑛) where 𝑁-step Adams 

Moulton is of order 0(ℎ𝑛+1) 
One way of deriving the implicit formular in the backward 

Euler is to simply iterate it with the initial value of the 

iteration 𝑦𝑛+1 
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𝑦𝑛+1
𝑚+1 = 𝑦𝑛 + ℎ𝑓(𝑥𝑛+1, 𝑦𝑛+1

𝑚 )                          (16) 

The predictor-corrector approach involves a two-step 

process, where an explicit method is first used to predict a 

value, and then an implicit method is used to correct and 

refine that value. This approach is particularly useful in 

numerical analysis. In predictor-corrector methods, an 

explicit formula (such as Adams-Bashforth) is used to 

predict the value of 𝑦𝑛+1. Then, an implicit formula (such 

as Adams-Moulton) of the same order is used to correct and 

improve the predicted value. The implicit formula typically 

requires one fewer step but utilizes more recent 

information, resulting in improved accuracy. The predictor-

corrector pair typically consists of an Adams-Bashforth 

method and an Adams-Moulton method of the same order, 

working together to provide a more accurate solution. The 

simplest pair would be the two-step Adam Bashforth 

method.  

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

2
[3(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥𝑛−1, 𝑦𝑛−1)]              (17) 

 as the predictor and the implicit trapezoidal rule as 

corrector. One step of this predictor- corrector method 

would thus consist of computing 

𝑦𝑛+1
𝑝

= 𝑦𝑛 +
ℎ

2
[3𝑓(𝑥𝑛, 𝑦𝑛) − 𝑓(𝑥𝑛−1, 𝑦𝑛−1)]       (18) 

and then   

𝑦𝑛+1 = 𝑦𝑛+1
𝑐 + 𝑦𝑛 +

ℎ

2
[(𝑥𝑛+1𝑦𝑛+1

𝑝
) + 𝑓(𝑥𝑛 , 𝑦𝑛)]     (19) 

Another way of deriving implicit formula is to use newton 

iteration 

Order of Multistep Methods 

Consider the linear difference operator £ defined by 

£(𝑦(𝑥): ℎ) = ∑ [𝛼𝑖𝑦(𝑥 + 𝑗ℎ) − ℎ𝛽𝑖𝑦
𝐼(𝑥 + 𝑗ℎ)]𝑘

𝑖=0     (20)        

where 𝑦(𝑥) is an arbitrary function continuously 

differential [a,b], we can formally define the order of 

accuracy of the operator and of the associated linear 

multimethod without involving the solution of the initial 

value problem  (20). Expanding the test function 𝑦(𝑥 + 𝑗ℎ) 
and its derivative𝑦𝐼(𝑥 + 𝑗ℎ) as Taylor series about x and 

collecting terms in equation (20) gives. 

£(𝑦(𝑥): ℎ) = 𝑐𝑜𝑦(𝑥)+𝑐1ℎ𝑦(𝑥)
𝐼 + .  .  . +𝑐𝑞ℎ

ℎ𝑦(𝑥)
𝑞

     (21) 

where 𝑐𝑞  are constants 

The difference operator (20) and the associated linear 

multistep method (21) are said to be of order 𝑝 if  

𝑐0 = 𝑐1 =.   .  . = 𝑐𝑝 = 0 

and 

𝑐𝑝+1 ≠ 0 

where 

𝑐0 =∑𝛼𝑗

𝑘

𝑗=0

 

𝑐1 =∑𝑗𝛼𝑗 −∑𝛽𝑗

𝑘

𝑗=0

𝑘

𝑗=1

 

𝑐𝑞 =
1

𝑞!
∑𝑗𝑞𝛼𝑗 −

1

(𝑞 − 1)!
∑𝑗𝑞−1𝛽𝑗

𝑘

𝑗=1

𝑘

𝑗=1

 

Derivative of Some Linear Multistep Schemes 

Chebyshev’s polynomials 

In this section, we shall present the derivative of some 

linear multistep schemes in solving initial value problem. 

We shall make use of Chebyshev ’s polynomials as basis 

function the reason for the use of Chebyshev’s polynomials 

is as a result of the even distribution of error in the range  

[-1,1]. 

 The 𝑟𝑡ℎ degree Chebychev polynomials 

𝑇𝑟(𝑥) = 𝑐𝑜𝑠 [𝑅 𝑐𝑜𝑠
−1{

2𝑥−𝑏−𝑎

𝑏−𝑎
}] ≅ ∑ 𝑐𝑚

𝑟𝑛
𝑚=0 𝑥𝑚, 

 𝑎 ≤ 𝑥 ≤ 𝑏, 

Which satisfies the recurrence relation 

𝑇𝑟+1(𝑥) = 2 [
2𝑥−𝑏−𝑎

𝑏−𝑎
] 𝑇𝑟(𝑥) − 𝑇𝑟−1(𝑥)   𝑟 ≥ 1 

Where 

𝑇0(𝑥) = 1 , 𝑇𝑟(𝑥)= 
2𝑥−𝑏−𝑎

𝑏−𝑎
   

The choice of Chebyshev polynomial as basis function in 

this project as a result, all monomials in  [𝑎, 𝑏] has the least 

maximum magnitude of error. 

In this chapter, we shall present the derivative of some 

classes of explicit methods which can be used as corrector 

when solving first order Ordinary Differential Equation 

with any initial value solvers. 

Here, we consider the solution to the First Order initial 

value problem 

𝑦  =f(x,𝑦(𝑥));𝑥𝑘 ≤ x ≤ 𝑥𝑘+𝑛    (22) 

𝑦(𝑥𝑘)=𝑦𝑘 

In this case, we make use of the Chebyshev polynomial 

y(x) = ∑ ar
𝑛
𝑘=0 𝑇𝑟(𝑥) ;𝑥(𝑥) ≤ 𝑥 ≤ 𝑥(𝑥+𝑛)  (23) 

Where 𝑇𝑟(𝑥) is the Chebychev polynomial equation 3.2 can 

be re-expressed as 

𝑦(𝑥)=∑ 𝑇𝑟
𝑛
𝑟=0 (

2𝑥

𝑛ℎ
−
2𝑘

𝑛
− 1)          (24) 

 A one step method 

Here we consider the case of 𝑛 = 2 in (24) 

 𝑦(𝑥) = 𝑎0𝑇𝑟(𝑥) + 𝑎1𝑇1(𝑥) + 𝑎2𝑇2(𝑥)                             (25) 

by the use of (25) and the equivalent value of 

 𝑇𝑟(𝑥)𝑦(𝑥) = 𝑎0 + 𝑎1(
𝑥
ℎ−𝑘−1)

+ 𝑎
2
(
𝑥
ℎ−𝑘−1)

       (26) 

𝑦(𝑥)
′ =

2𝑎1

ℎ
+
8𝑎

2
(
𝑥
ℎ−𝑘−1)

ℎ
        (27) 

Collocating (26) at 𝑥𝑘 , 𝑥𝑘+1 and interpolating (27) at𝑥𝑘+1 

gives the set of algebraic equation 

(
1 0 −1
0 1 −4
0 1 0

)(

𝑎1
𝑎2
𝑎3
)    =   (

𝑌𝑘+1
ℎ𝑓𝑘
ℎ𝑓𝑘+1

)       (28) 

Solving equation (28) this equation gives  

𝑎0   =  𝑌𝑘+1  +  
ℎ

4
𝑓𝑘+1  −  𝑓𝑘         (29) 

𝑎1  =  ℎ𝑓𝑘+1          (30) 

𝑎2  =  
ℎ

4
(𝑓𝑘+1  − 𝑓𝑘)             (31) 
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We Substituting equations 𝑎0 , 𝑎1 and 𝑎2 into equation (26) 

to give the continuous scheme  

𝑦𝑘  =  𝑦𝑘+1  +
ℎ𝑓𝑘+1

4
{2

(𝑥−𝑥𝑘)
2

ℎ2
− 2} −

ℎ𝑓𝑘

4
{2

(x−xk)
2

ℎ2
 −

4
(x−xk)

ℎ
+ 4}                    (32) 

Evaluating (32) at 𝑥𝑘+1 ,we have the discrete scheme. 

𝑦𝑘+2 = 𝑦𝑘+1  +  
ℎ

2
(3𝑓𝑘+1 − 𝑓𝑘) 

A two-step method  

Here, we make use of (24) such that 𝑛 = 3, that is  

𝑦𝑥 = 𝑎0𝑇0(𝑥)  + 𝑎1𝑇1(𝑥)  +  𝑎2𝑇2(𝑥)  + 𝑎3𝑇3(𝑥) 

By the use of (25) and 𝑛 = 3 the equivalent value of 𝑇𝑟(𝑥) 

𝑦(𝑥) = 𝑎0 + 𝑎1 (
2𝑥

3ℎ
−
2𝑘

3
− 1)  + 𝑎2 (2 (

2𝑥

3ℎ
−
2𝑘

3
− 1)

2
 −

1) + 𝑎3 (4 (
2𝑥

3ℎ
−
2𝑘

3
− 1)

3
− 3(

2𝑘

3ℎ
−
2𝑘

3
− 1))    (33)                                                                                 

𝑦𝑥
′ = 

2𝑎1

ℎ
+
8𝑎2

3ℎ
(
2x

3h
−
2k

3
− 1) +

2a3

h
                        (34)                                               

Collocating (33) at 𝑥𝑘 , 𝑥𝑘+1 , 𝑥𝑘+2 and interpolating (34) at 

𝑥𝑘+2 gives the following set of algebraic equation 

(

27 9
0 2

−21 −23
−8 18

0 6
0 6

−8 −10
8 −10

)(

𝑎0
𝑎1
𝑎2
𝑎3

)  =   (

27𝑦𝑘+2
2ℎ𝑓𝑘
2ℎ𝑓𝑘+1
2ℎ𝑓𝑘+2

)    (36) 

Solving these equation gives  

𝑎0 = 𝑦𝑘+2  +  
ℎ

192
(44𝑓𝑘+2  − 148𝑓𝑘+1 + 8𝑓𝑘), 

𝑎1=
ℎ

64
(63𝑓𝑘+2 + 18𝑓𝑘+1 + 15𝑓𝑘) 

𝑎2 =
9ℎ

16
(𝑓𝑘+2−𝑓𝑘+1) 

𝑎3 =
9ℎ

64
(𝑓𝑘+2 − 2𝑓𝑘+1 + 𝑓𝑘) 

Substituting these into (34) gives the continuous scheme 

𝑦𝑥 = 𝑦𝑘+2  +  
ℎ𝑓𝑘+2

192
{108(

𝑥−𝑥𝑘

3ℎ
)
3
+ 216(

𝑥−𝑥𝑘

3ℎ
)
2
+

108(
x−xk

3h
) − 64} −

ℎ𝑓𝑘+1

192
{216(

𝑥−𝑥𝑘

3ℎ
)
3
+ 216(

𝑥−𝑥𝑘

3ℎ
)
2
+

216(
𝑥−𝑥𝑘

3ℎ
) − 40} +

ℎ𝑓𝑘

192
{108 (

𝑥−𝑥𝑘

3ℎ
)
3
− 36(

x−xk

3h
)  + 8}                                                                                                                            

     (37) 

Evaluating at 𝑥𝑘+3, we have the discrete scheme 

𝑦𝑘+3 = 𝑦𝑘+2  +
ℎ

12
(23𝑓𝑘+2 − 16𝑓𝑘+1 + 5𝑓𝑘) 

A three-step method 

Here we consider the case where 𝑛 = 4 in (24), that is 

𝑦𝑘 = 𝑎0𝑇0(𝑥) + 𝑎1𝑇1(𝑥) + 𝑎2𝑇2(𝑥) + 𝑎3𝑇3(𝑥) + 𝑎4𝑇4(𝑥) 

by the use of (25) and the equivalent values of 𝑇𝑟(𝑥) 

𝑦(𝑥) =  𝑎0  + 𝑎1 (
𝑥

2ℎ
−
𝑘

2
− 1) 

+ 𝑎2 (2 (
x

2h
−
k

2
− 1)

2

−  1) 

+𝑎3  (4(
𝑥

2ℎ
−
𝑘

2
− 1)

3

−  3 (
𝑥

2ℎ
−
𝑘

2
− 1))  

+𝑎4 (8 (
𝑥

2ℎ
−
𝑘

2
− 1)

4
− 8(

𝑥

2ℎ
−
𝑘

2
− 1)

2
+ 1)              (38) 

𝑦𝑥
′ = 

𝑎1
2ℎ
 + 

2𝑎2
ℎ
(
𝑥

2ℎ
−
𝑘

2
− 1)

+
3𝑎3
2ℎ
(4 (

𝑥

2ℎ
−
𝑘

2
− 1)

2

− 1) 

 +
8𝑎4

ℎ
(2 (

𝑥

2ℎ
−
𝑘

2
− 1)

3
− (

x

2h
−
k

2
− 1))                  (39) 

Collocating (38) at 𝑥𝑘 , 𝑥𝑘+1, 𝑥𝑘+2𝑎𝑛𝑑 𝑥𝑘+3 and 

interpolating (39) at  𝑥𝑘+3 gives the sets of algebraic 

equation 

(

 
 

0 1 −1 −2 −1
0 1 −4 9 −16
0 1
0
0

1
1

−2
0
2

0 4
−3
0

0
−4)

 
 

(

 
 

𝑎0
𝑎1
𝑎2
𝑎3
𝑎4)

 
 
  =  

(

 
 

2𝑦𝑘+3
2ℎ𝑓𝑘
2ℎ𝑓𝑘+1
2ℎ𝑓𝑘+2
2ℎ𝑓𝑘+3)

 
 

 

Solving these equation gives 

𝑎0 =   𝑦𝑘+3 +
ℎ

24
{3𝑓𝑘+3 − 19𝑓𝑘+2 − 7𝑓𝑘+1 + 19𝑓𝑘} 

𝑎1  = ℎ{𝑓𝑘+3 + 𝑓𝑘+1} 

𝑎2  =  
ℎ

6
{4𝑓𝑘+3 − 3𝑓𝑘+2 − 𝑓𝑘} 

𝑎3 =  
ℎ

3
{𝑓𝑘+3 − 2𝑓𝑘+2 + 𝑓𝑘+1} 

𝑎4 =  
ℎ

3
{𝑓𝑘+3 − 𝑓𝑘+2 + 𝑓𝑘+1} 

Substituting these into (38) gives the continuous scheme 

𝑦𝑥 = 𝑦𝑘+3 + 
ℎ𝑓𝑘+3

24
{16 (

𝑥−𝑥𝑘

4ℎ
)
4
+ 32 (

𝑥−𝑥𝑘

4ℎ
)
3
+

16 (
𝑥−𝑥𝑘

4ℎ
) − 9} −

ℎ𝑓𝑘+3

24
{48 (

𝑥−𝑥𝑘

4ℎ
)
4
+ 64 (

𝑥−𝑥𝑘

4ℎ
)
3
−

24 (
𝑥−𝑥𝑘

4ℎ
)
2
− 48(

𝑥−𝑥𝑘

4ℎ
) +  19} +

ℎ𝑓𝑘+1

24
{48 (

𝑥−𝑥𝑘

4ℎ
)
4
 +

32 (
𝑥−𝑥𝑘

4ℎ
)
3
−  48(

𝑥−𝑥𝑘

4ℎ
)
2
+ 5 }  −

ℎ𝑓𝑘

24
{16 (

𝑥−𝑥𝑘

4ℎ
)
4
−

8(
𝑥−𝑥𝑘

4ℎ
)
2
+ 1}           (40) 

Evaluate (40) at 𝑥𝑘+4 we have the discrete scheme 
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𝑦𝑘+4  = 𝑦𝑘+3 +
ℎ

24
{55𝑓𝑘+3 − 59𝑓𝑘+2 + 37𝑓𝑘+1

− 9𝑓𝑘} 
Convergence 

In this section we shall look at some basic properties of 

multistep methods 

i. Consistence 

ii. Zero stability 

For any linear multistep to converge it must be consistence 

and zero stable. 

Definition 

1. A multistep is consistence if it has order p≥
1 

2. A linear multistep is zero stable if no roots 

of the first characteristic polynomial 𝑝(𝜀) 
has modulus greater than one and if every 

root with modulus one is simple. Here we 

shall determine the ordeer of our methods. 

3. A linear multistep is of order p if for  

𝑐0 = 𝑐1 =∙  ∙  ∙= 𝑐𝑝 = 0 but 𝑐𝑝+1 ≠ 0 

Where   𝑐0 = ∑ 𝛼𝑗
𝑘
𝑗=0  

𝑐1 =∑𝑗𝛼𝑗

𝑘

𝑗=1

−∑𝛽𝑗

𝑘

𝑗=0

 

𝑐𝑞 =
1

𝑞!
∑𝐽𝑞𝛼𝑗 −

1

(𝑞 − 1)!
∑𝑗𝑞−1𝛽𝑗

𝑘

𝑗=0

𝑘

𝑗=1

 

We find the orders as follows 

𝑦𝑘+2 = 𝑦𝑘+1  +
ℎ

2
{3𝑓𝑘+1 − 𝑓𝑘} 

𝑐0 =∑𝛼𝑗

2

𝑗=0

= 𝛼0 + 𝛼1 + 𝛼2 

= 0−1 + 1= 0 

 

𝑐1=∑𝑗

2

𝑗=1

𝛼𝑗 −∑𝛽𝑗

1

𝑗=0

 

= 𝛼1 + 2𝛼2 − 𝛽0 + 𝛽1 

= −1 + 2 +
1

2
−
3

2
= 0 

𝑐2 = 
1

2!
∑𝑗𝛼𝑗 −∑𝑗1𝛽𝑗

1

𝑗=1

2

𝑗=1

 

=
1

2
(12𝛼1 − 2

2𝛼2) − 1𝛽1 

=
3

2
+
3

2
= 0 

𝑐3   =
1

3!
(∑𝛼𝑗

2

𝑗=1

) −
1

(3 − 1)!
∑𝛽𝑗

1

𝑗=1

 

=
1

6
(13𝛼1 + 2

3𝛼2) −
1

2
(12𝛽1) 

=
7

6
−
3

4
=
5

12
 

 This is consistent of order 2 and the error constant is 
5

12
 

𝑦𝑘+3 = 12𝑦𝑘+2 +
ℎ

12
(23𝑓𝑘+2 − 16𝑓𝑘+1 + 5𝑓𝑘) 

𝑐0 =∑𝛼𝑗

3

𝑗=0

 

= 0 + 0 − 12 − 12 = 0 

𝑐1 =∑𝑗𝛼𝑗

3

𝑗=1

−∑𝛽𝑗 = 0

2

𝑗−0

 

𝑐2  =
1

2!
∑𝑗2𝛼𝑗 −∑𝛽𝑗

2

𝑗=1

4

𝑗=1

 

= 30 − 30 = 0 

𝑐3   =
1

4!
∑𝑗4𝛼𝑗 −

1

(3)!
∑𝑗3𝛽𝑗

2

𝑗=1

4

𝑗=1

 

= 38 − 38 = 0 

𝑐4 =
1

4!
∑𝑗4𝛼𝑗 −

1

3!
∑𝑗3𝛽𝑗

2

𝑗=1

4

𝑗=1

 

=
9

2
 

This is consistent, of order 3 and the error constant is 
9

2
 

𝑦𝑘+4 = 𝑦𝑘+3 + ℎ(55𝑓𝑘+3 − 59𝑓𝑘+2 + 37𝑓𝑘+1 − 9𝑓𝑘) 

𝑐0 = 0,𝑐1 = 0,𝑐2 = 0,𝑐3 = 0,𝑐4 = 0,𝑐5 =
251

30
 

This is consistent, of order 4 and the error constant is 
251

30
 

Zero Stability     

In this section we shall take a look at zero stability of linear 

multistep scheme 

Definition:  A linear multistep method is zero stable if no 

root of the first characteristic polynomial P(𝜀) has modulus 

greater than one and if every root with modulus one is 

simple  

To calculate the zero stability of the methods derived in this 

chapter, we shall consider the roots of the first 

http://www.ftstjournal.com/


Derivation of Adam- Bashforth Explicit Scheme Using Chebychev Polynomial as Basis Function 

 

FUW Trends in Science & Technology Journal, www.ftstjournal.com 

e-ISSN: 24085162; p-ISSN: 20485170; December, 2024: Vol. 9 No. 3 pp. 048 – 056  55 

characteristic polynomial P(𝜀) Of a linear multistep 

method  

𝛼𝑦𝑛 + 𝛼1𝑦𝑛+1 +∙  ∙  ∙ +𝛼𝑛𝑦𝑛+𝑘 = ℎ∑𝛽𝑗

𝑘

𝑗=0

 

The root of the first characteristic polynomial is given as  

𝛼𝑘𝑟
𝑘 + 𝛼𝑘−1𝑟

𝑛−1 +∙ ∙ ∙ +𝛼1𝑟 + 𝛼0 = 0 

Applying this to the scheme  

𝑦𝑘+2 − 𝑦𝑘+1 =
ℎ

3
(3𝑓𝑘+1 + 𝑓𝑘) 

Here 𝑟 = 0 𝑜𝑟 1 

This is zero stable  

12𝑦𝑘+3 − 12𝑦𝑘+2 = ℎ(23𝑓𝑘+2 − 16𝑓𝑘+1 + 5𝑓𝑘) 

here 𝑟 = 0 𝑜𝑟 1 

so, this is zero stable 

24𝑓𝑘+4 − 24𝑓𝑘+3 = ℎ(55𝑓𝑘+3 − 59𝑓𝑘+2 + 37𝑓𝑘+1 − 9𝑓𝑘) 

here 𝑟 = 0 𝑜𝑟 1 

Therefore, this is zero stable. 

Table 1: Error Constant 

Method Order Error Constant 

A one step 

method 

2 5

12
 

A two step 

method 

3 9

2
 

A three step 

method 

4 251

30
 

 

 

 

 

Conclusion 

In this presentation we looked at two methods of solving 

First Order Ordinary Differential Equation. 

(1) Analytical 

(2) Numerical 

In solving the differential equations analytically, the 

following methods can be adopted: 

Variable Separable, Exact Equations, Homogeneous 

method, Integrating Factor method to mention just a few   

The numerical methods cannot be over looked, because it 

affords us the opportunity of solving differential equations 

whose analytical solution is intractable. So, some various 

methods frequently used are: Euler’s Method, Runge-Kutta, 

Mid-Point, Linear multistep Methods which is always    

We have derived both continuous and discrete Adams 

Bashforth Linear Multistep Explicit Scheme for solving 

First Order Ordinary Differential Equations. In this 

derivation, we made use of Chebyshev Polynomial as the 

basis function. The reason being as a result of even 

distribution of error in the range [−1,1].  

The Linear Multistep Scheme yields Adams-Bashforth 

Explicit method of the One step, two step, and the Three 

Step Method at grid point which serve as the predictor to 

Adams Moulton of the same order to correct or improve 

that value. 

Convergence is a minimal property which any acceptable 

linear multistep method must possess. Qualitatively 

speaking, consistency controls the magnitude of the local 

truncation errors committed at each stage of the calculation 

while zero stability controls the manner in which this error 

is propagated as the calculation proceeds, both are essential 

if convergence is to be achieved. 

The explicit Adams-Bashforth Scheme derived meets the 

necessary and sufficient condition to three convergent 

which is both consistent and zero stable. So, we 

recommend the Adams-Bashforth Multistep Explicit 

Scheme as predictor for Solving First Order Ordinary 

Differential Equation. 
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